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Benchmarking

O Benchmarking campaign between different codes: OPAL, SCODE,
ZGOUBI, EARLIETIMES and MAUS.
| /\'
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MAUS )

OPAL

1.45

[ 111

1.40

(J The idea is to use the same 2D or 3D
field maps for the simulation.
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1 Lots of work but yielded excellent
results so far.
Betatron tunes from 11 to 139 MeV (left
to right) calculated with several codes.
Courtesy S. L. Sheehy
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Mean field index of the magnets

1 An extension of the mean field index k as defined by Symon consists in
introducing its azimuthal variation in the following way:

R dB; , .
ki = X i =F,D,drift

" B; dR
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(a) Average field index map of the focusing magnet (b) Average field index map of the defocusing magnet
(kr) (kp)
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Mean field index of the magnets
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(a) Average field index map of the focusing magnet (b) Average field index map of the defocusing magnet
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Realistically, the field index of the magnet changes radially and azimuthally.
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Preliminary finding

A Ifk = kr — kp # 0, the tunes are energy-dependent and the orbits are
not similar.

560

520

= Non scaling FFAG.

Orbit Radius (cm)

500 ¢

480 ¢

460 : : : : :
0 0.1 02 03 04 05 0.6

Azimuthal angle 0 (rad)

d An accurate solution of the non-linear equation of motion is thus needed.

= Calculate an approximate solution of the tunes and compare with the
numerical simulations (using the tracking code Zgoubi).
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Bogoliubov method of averages (non-scaling)

O Using the BKM’s method of averages, one can compute
approximately the frequencies of the betatron oscillations and their
dependence on the average field index of the F and D magnet. One
obtains:

v2(E) = Y, Bi(E) =) aui(E) x ki(E) vy(B) = 3 ai(E) x ki(E)
7 N2
N2 , , + S F2 [1+2tan2(f)]
(N2—1)(N2—4)}— [1 + tan®(¢)] NZ—1

where the subscript 1 denotes the F-magnet, the D-magnet and the drift and:

2
1 1 R B 1 / 9 1 R
_ _ h - = w(R,0)%do = (— do
27 /N 91“(R’9)d9 21 /N /gipdg ! 2m/N Jy, 2/N Jo, \ p

15t order index of similarity 2"d order index of similarity
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Bogoliubov method of averages (non-scaling)

O Using the BKM’s method of averages, one can compute
approximately the frequencies of the betatron oscillations and their
dependence on the average field index of the F and D magnet. One

obtains: Focusing due to the average magnetic gradient
VE) = |2, BB Y aulB) x ki(E) VE) = |3, ai(E) x u(F)
!: N? 2 2
N2 , , + N2—1]: [1+ 2tan?(¢)]
+ (N2—1)(N2—4)}_ [1 + tan®(¢)]

Radial focusing from centrifugal forces

where the subscript 1 denotes the F-magnet, the D-magnet and the drift and:

2
1 1 R B 1 / 9 1 R
_ _ h - = w(R,0)%do = (— do
27 /N 91“(R’9)d9 21 /N /gipdg ! 2m/N Jy, 2/N Jo, \ p

15t order index of similarity 2"d order index of similarity

x-motion focused in magnets with positive curvature and defocused in magnets with negative curvature.
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Fundamental property

 Define a closed orbit, i.e. for a given energy, in a cylindrical
coordinates system:

R(0) = (R) [1 + f.g(NO)]

1 Compute the first and second order index of similarity:

dR\’° _d°R
2 P PR -
R +2(d9) i

R
() - 3/2 R

P/ E dR\?|

RZ + [ —

do
O It results that, for any closed orbit:
1 denotes the F-magnet,
Z x; (E ) = —1 the D-magnet and the
p drift
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Bogoliubov method of averages (non-scaling)

. . 2
Q Using the previous ,2(p) — <5> (Y| ~ar(B) x [k (B) - kp BN+ kn(E)
result, one obtains: p

3N* 2 2
+ (N2_1)(N2_4)If_[1+tan ()]

vy (E) = |ap(E) x[kp(E) — kp(E)]|- kp(E)
Nz
N2 -1

_|_

F[1+ 2 tan*(¢)]

 All parameters are susceptible to change when scaling imperfections
introduced: the non-scaling of the orbits introduces a change of the average
magnetic gradient.

O It does introduce a change of the magnetic flutter as well as the index of
similarity [3 of the orbits.
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Bogoliubov method of averages (scaling)

. . 2
Q Using the previous )~ (%) (p) ap<fw><<z<kb(En+kD(E>
result, one obtains: p

3N? 2 2
- (N2—1)(N2—4)]: [1+ta,n (f)}

v (E) = ap(E) x [M] — kp(E)

2
+ N2—1]:2 [1+2tan2(§)]

A If kr = kp, one recovers the same expression as Symon, except for one

term: <§>Q(E)

 This term is the contribution of the centrifugal forces and is equal to 1,
only for a circular orbit.
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Bogoliubov method of averages (scaling)

. . 2
Q Using the previous )~ (%) (p) ap<fw><<z<kb(En+kD(E>
result, one obtains: p

3N? 2 2
- (N2—1)(N2—4)]: [1+ta,n (f)}

v (E) = ap(E) x [M] — kp(E)

2
+ N2—1]:2 [1+2tan2(§)]

A If kr = kp, one recovers the same expression as Symon, except for one

term: <§>Q(E)

 This term is the contribution of the centrifugal forces and is equal to 1,
only for a circular orbit.
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ZGOUBI tracking model: Approach (1/4)

Loop on x
Loop on kp

Loop on kp

1) Generate a median plane field map
for a given (X, kg, kp).

2) Search for the closed orbits.

3) Compute the tunes
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ZGOUBI tracking model: Approach (2/4)

1) Build the model by generating a median plane field map for a given
(X, kg, kp). Tracking is performed using ZGOUBI: Median plane anti-
symmetry is assumed and the Maxwell equations are accommodated
which yields the Taylor expansions for the three components of the
magnetic field.

The field writes in the following way:

R\"F R\"?
B(R}G)ZBFDX (—) XFF(G)—I—IXBDO X (—) XFD(Q)
Ry Ry
- Xis ascale factor to change the FD ratio
- kg is the average field index of the F-magnet Separable function:
- kp is the average field index of the D-magnet Fz(6).Fp(6) =0

NB: if kr = kp, the field writes in the standard form of a scaling FFAG.
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ZGOUBI tracking model: Approach (3/4)

2) Search for the closed orbits between injection energy and extraction
energy: 30 closed orbits between E;,; = 11 MeV and E.y; = 100 MeV'.
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Example of several closed orbits: the
lattice consists of 12 DFD triplets.
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10 | Bp(R) = Bpg (R/R))™.

N

BF(R) = By (R/R)"F
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Magnetic field along several closed orbits

CorLuMBIA UNIVERSITY
MEeDICAL CENTER

14



ZGOUBI tracking model: Approach (4/4)

3) For each closed orbit the number of betatron oscillations in both
planes 1s calculated using the Zgoubi Discrete Fourier Transform
(DFT).

As explained earlier, the main objective of this study 1s to explain the
origin of the tune variations in FFAGs. Therefore, we introduce two
new quantities in the calculation of the tunes: the average as well as
the RMS tune variations over the closed orbits (NCO):

=1
— NCO 2
yrms = <V;2cy>1/2: % Z:‘ (Vx’y’i V?})z
=
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ZGOUBI tracking model: results

10 SFabiIity diagrqm . _ . K
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— vertical
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0.000

Contour plot of the average cell tune. Contour plot of the tune variations.

In the vicinity of the central line, i.e. kr = kp, the Symon formula i1s
qualitatively verified.

Can we explain the stability diagrams? Why does it shrink linearly
with k?
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Comparison analytical vs simulation results

1 Comparison of the Zgoubi
results (blue) with the 1%

order bogoliubov method of -

averages shows good

agreement.

O Two  regimes can  be
distinguished depending on
the sign of Kk = kp — kp.

(] The tune variations vanish at
Kk =0.

O Symon formula fails in the
horizontal plane.
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Application to the KURRI 150 MeV FFAG

(E) = Br(E)+2Bp(E)+ Buift(E) — ap(E)kp(E) — 2ap(E)kp(E) — agrift(E)karifi(E)
2E) = ap(E)kp(E)+ 20p(E)kp(E) + adgrist(E)karise(E) + F

18

ZGOUBI calculation from TOSCA fieldmap tracking ——
1st order Bogolyobov method of averages -
Hard edge model conjecture =
Ist order Symon formula =
Measured tunes

14 . #
e R . %, o

formula fails? g

0 20 40 60 80 100 120 140
Kinetic Energy (MeV)
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Application to the KURRI 150 MeV FFAG

vi(E) = Br(E)+208p(E)+ Barist(E) — ap(E)kp(E) — 2ap(E)kp(E) — adrifi(E)karifi(E)
vy(E) = ap(B)kp(E)+2ap(E)kp(E) + agipi(B)karifi(E) + F

Yy
60

8.6

8.4 S R S , | 50 f
z 82 e 0|
5 D
qg 78 ; - For KURRI
e 20 7.4<f < 8.4
5 76 4
= H

7.4 B e 10 F

7 .2 0 I I B= l I T

0 20 40 60 80 100 120 140 0 2 4 6 8 10
Kinetic Energy (MeV) Oscillation amplitude (f=R, /R, .-1)in %
Index of similarity B computed from the TOSCA fieldmap tracking Ana]ytical expression of B as a function of the scal]oping
of the orbit.

Does this explain why the tunes increase with the energy in the horizontal plane?
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Application to the KURRI 150 MeV FFAG

vi(E) = Br(E)+208p(E)+ Barist(E) — ap(E)kp(E) — 2ap(E)kp(E) — adrifi(E)karifi(E)
vy(E) = ap(B)kp(E)+2ap(E)kp(E) + agipi(B)karifi(E) + F

].8 T T T T T T
ZGOUBI calculation from TOSCA fieldmap tracking ——
1st order Bogolyobov method of averages

. Hard edge model conjecture =
Yes, the monotonic 16 - Ist order Symon formula &

behavior of the tunes ; ; ; Measured tunes

plane is due to the il
increase  of  the o 5 L e o S T
horizontal restoring g
force due to the non-
scaling of the orbits.

0 20 40 60 80 100 120 140
Kinetic Energy (MeV)
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Key finding

11

In presence of scaling imperfections, the number of betatron oscillations

per turn increases (resp decreases) with the energy if k = kp — kp > 0
(resp Kk < 0).

Besides, the variations of the square of the number of betatron
oscillations are, to the first order, proportional to |K|.

These results are obtained from simulations using different fringe fields.
Can we prove the above results analytically?

Reminder, for KURRI, kp~9 while kp~7.6 thus kx>0.
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Proof 1/2

It can be shown, from what preceded that the tune variations in the
horizontal plane are pre-dominantly due to the change of the horizontal
restoring force due to the non-scaling of the orbits:

2
) < B>
?‘Sm (R%“E’) _ A4 ﬁ?; 37 < Bp>
pis [1+A3 (R) ] Ay=1+45>0
Ry

 Similarly, in the vertical plane, the tune variations are pre-dominantly due
to the change of the magnetic flutter due to the non-scaling of the orbits:

(F20)) + (40 (£30)) (7 )
1

1= 0 _

(B Fr @) 1+ (1) 2

Only valid if ,  (B?)
F-(0).Fp(8) =0 |/~ =

This proves the first part of the property.
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Proof 2/2

U It can also be shown, from the previous results that:

2 0s 2 ng
A (%) |85 (max) — B (min)| = A4’8; __ (1‘%%;)2
24585 | AR
- |1+143 ] o<

R is the injection
radius

A (yy2) RS |f2(ma:t) — FQ(min)| =

L 24| (FB(0)) + (FE(0))]

(F2(0)) + (As) (F3(0)) (

g3
Ry

2K
) ~(FR0)) + (43)° (FR(9))

ea(z) ]

1+ As]?

(14 As)°

A
| o i x [

This proves the second part of the property. Furthermore, one demonstrated that the tune variations increase
linearly with the radial excursion of the magnets in both planes. Hence the interest of scaling FFAG with small

orbit excursion (second stability region).

Vanishes when the FD ratio goes to zero. Expected since one of the two magnets is removed!
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Verification tests 1/3

(] Start from a scaling FFAG lattice: kr = kp = 7.6 and A; = —0.55
This yields fz° = 10.7
 Introduce an error such that k = 0.4

1.8 . . ' .
Tracking results
1.6 1 Analytical
As shown earlier 4 Analytical st order
2 r L
24585 | AR L2 T
2\ 3MF
A(VI) N‘1+A3 R()|K|O<|K| N; 1 F
3 08¢
0.6
Good agreement between 04 |
the numerical simulations 0.2 t
and the analytical formula. S S S S S S—
0O 2 4 6 8 10 12 14 16

AR/R, (%)
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Verification tests 2/3

(] Start from a scaling FFAG lattice: kr = kp = 7.6 and A; = —0.55
This yields fz° = 10.7
 Introduce an error such that k > 0

7

| Trackling results
6 | Analytical
Analytical 1st order

As shown earlier, 5|
2435% | AR 4 |
A (v,°%) = ‘ E K| o || —
<

Good agreement except for
large r-values . 0r
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Verification tests 3/3

For the same FD ratio at injection and the same average field index of the
magnet (or same type of error), is there a field profile of the magnets that

is less sensitive to these types of imperfections?

M " Casel
i Case2 —— |

47 ¥ Case3

Keeping the same average magnetic

flutter for the D-magnet means the 5 |
width of the magnet can be reduced E

while increasing the amplitude of its

field. 8

0 0.1 0.2 0.3 0.4 0.5 0.6
0 (rad)

Field along the orbit in one cell.
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Verification tests 3/3

For the same FD ratio at injection and the same average field index of the

magnet (or same type of error), is there a field profile of the magnets that
is less sensitive to these types of imperfections?

03 ‘
Casel
Case? ———
028 el
SCa]ing o
— 0.26
5
& 0.24 +
g *K*M
E e
75 022t L .
k
02t
0.16 , | | | | ‘ l
0.327 0.328 0.329 0.33 0.331 0.332 0.333 0.334 0.335

Horizontal tune per cell

Tune diagram for various cases.

| Casel |

4 | i Case2 —— |
¥ Case3

0 0.1 0.2 0.3 04 0.5
0 (rad)

Field along the orbit in one cell.

0.6

ao
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Verification tests 3/3

For the same FD ratio at injection and the same average field index of the

magnet (or same type of error), is there a field profile of the magnets that
is less sensitive to these types of imperfections?

Vertical tune per cell

T T T T T T T 6 4 T T T T
0 Casel e Casel
Case2 —— 4 x Case2 —— |
0.28 Case3 | Case3
Scaling —=— 2t |
026 i N r__;__ﬁ:  —

Yes, the best case is the one for which the second order moment of

the magnetic flutter is minimum, i.e. < FZ(8) > is minimum, as
022 | shown earlier.

0.24 +

018 F - 4 (1 + A3)3 Ry
0.16 AN S S S S U SN N ' J l ‘
0.327 0.328 0.329 0.33 0.331 0.332 0.333 0.334 0.335 0 0.1 0.2 0.3 0.4 0.5 0.6
Horizontal tune per cell B (rad)
Tune diagram for various cases. Field along the orbit in one cell.
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Explaining the stability diagram

10 SFablllty d|agralm

Upper left side: radial pi-mode stop
band resonance, or phase
advance=180 deg.

Lower right side: vertical phase o
advance=0 deg.

Why does it shrink linearly? 6f

2 2 7 — horizontal
o (g) — 2 (g) —k—pB / — vertical
5 . | ~ | I !
k| = . AR % 5 AR 5 6 7 o 8 9 10
Ry Ry
==
" v2 ket Large K-values are less tolerant to field
Kl = ~ ° °
Q2R AR imperfections. However ..
— Ro Ro
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Compensation of tune variations in FFAG

1. In presence of scaling imperfections, the number of betatron oscillations

per turn increases (resp decreases) with the energy if k = kp — kp > 0
(resp Kk < 0).

Il.  Besides, the variations of the square of the number of betatron
oscillations are, to the first order, proportional to |K|.

O Main idea: if we create alternating scaling imperfections, by
alternating k, one may obtain a fixed tune machine.
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Concept of the non-scaling fixed tune FFAG

Bz (kGauss)
600 L] 5
400
, -4 0
200 | &ff
]
5 oLl -— -5
>
200 F ol == -10
400
-15
-600
600 -400 -200 0 200 400 600
X (cm) -20
-25

Replace the 12-fold symmetry by a 6-fold symmetry.
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Concept of the non-scaling fixed tune FFAG

0.2 T T T T T
(kpkp)=(7.6,7.8) o
| 0.195 | (kpkp)=(7.6.7.8).(7.6,7.4) ﬁf’, .
(kpkp)=(7.6,7.4) — s
| 0.19 ¢ o
g 085 ¢ ~ Ke<kp
5 0.18 t
7 o
Q
| 5 0175} "
Tg Alternating sign(kg-kp)
E= 0.17 -
-10 ! ' ! : : o
0 0.1 0.2 0.3 0.4 0.5 0.6 >
Theta (rad) 0165 B
Magnetic field along several closed orbits in the 0.16 ~
ZGOUBI model. F
0.15

0.345 0.35 0.355 0.36 0.365 0.37 0.375

Horizontal tune per cell

Using the mid-plane field map (or the analytical model FFAG), one can show that
alternating k allows to alternate the phase advance between the upper and lower regions
so that the tune becomes constant.
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Concept of the non-scaling fixed tune FFAG

12:5 | ' r ' ' " (kpkp)=(7.6,7.400)  ~
. (kpkp)=(7.6,7.748) 4
v, (kpkp)=(7.6,7.4),(7.6,7.748)
12 X
V'vv
s vvvvvvyvv'v
g 11.5 vvv"'vvvvvv
E YYYvYyvvyy
8
GEJD ll XK X X > XX X X X XX XXX XXX X XX XK X XX X Ko XX XX KX
3 i
=
AAAAAAAAAAAAA
AAAAAAAAA““
10.5 t Caaaasasrt
10 ‘ : ‘ : ' ‘ : ‘
10 20 30 40 50 60 70 80 90 100

Kinetic Energy (MeV)

The magnetic flutter of the orbits is not energy-independent inside any
magnet. However, it becomes constant when calculated over the width of
the two DFD triplets combined.

CorLuMBIA UNIVERSITY
AL/ MepicaL CENTER 3 3



Phase space

80 80 ;

60 N 60 |-/ ol l

40 \ i ::.:-::"‘M 40 NQ%:.::N AR S

\ “"**44::."'\“ \ ‘\ \K%

—_ \ oy, ,;
8 20 } L/f/ﬁ - 8 20 : ) \

-40 sttt e 40 N

/ = '_..w-"'* \ - ’dﬁ
/ -l _:.::_,-v"
-60 60 \
L : N
-80 80 j
521 522 523 524 525 526 527 528 529 530 521 522 523 524 525 526 527 28 529 530
Radius (cm) Radius (cm) \
2 cell
Scaling FFAG with kr = kp = 7.6 Non-Scaling FFAG with

(kg kp) = (7.6,7.4),(7.6,7.8)

Horizontal phase space at 100 MeV including the separatrix. The limit of
stable motion is obtained when the particle is lost in less than 1000 turns.
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Dynamic Acceptance

0.5 ‘ — ‘
Non scaling qy
Scalingqy =
Non scaling gx
Scaling gx
. 0.4 |
Generate a scaling
FFAG lattice and a =
non-scaling one that 3 03]
have the same fixed =
tunes. = 02|
- ——————— — — — — — — — — ——— — — — — — — — — — —
0.1 |
0 I I I 1 ! | I |
10 20 30 40 50 60 70 80 90 100

Kinetic Energy (MeV)
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Dynamic Acceptance

2200

Non scaling
2000 | Scaling —%—, |

1800 |
1600 |
1400
1200 ¢

1000 ¢

DA norm (mm.mrad)

800 |

600 |

400

10 20 30 40 50 60 70 80 90 100
Kinetic Energy (MeV)

For the same tunes, the Dynamic Acceptance of the scaling and the
non-scaling lattice are the same.
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Next

 Reverse the problem: defining arbitrary functions of the tunes

in both planes, can we obtain the expression of the magnetic
field?
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Thank you!
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Backup slides
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DA of the non-scaling FFAG

2000 . . ‘

K= kD — kF 1600 -

Kk = 0 = scaling

DA norm (mm.mrad)

.
=
EEGOm
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Although large Kk values can be explored and the stability limit overcome, the main finding
is that the DA decreases with increasing k.

The amplitude of K should not exceed 10 % of the average field index of the magnets in
order to maintain a reasonably large horizontal DA (> 50 mt mm.mrad).
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